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Effects of anelastic deformation on 
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High-temperature (1160 to 1450 ~ C) deformation of dense polycrystalline (10 to 90#m) 
AI2 03 and MgO doped with Fe (up to 2.65 cation %) was studied by stress relaxation, 
dead-load creep and creep recovery. In some cases, all three deformation tests were 
conducted on a single specimen. A comparison of strain rate-stress data calculated from 
both stress relaxation and dead-load creep experiments revealed discrepancies in both the 
magnitude of the strain rates and the dependence between the strain rate and stress. 
These differences were attributed to the existence of anelastic deformation effects. 
The correction of stress relaxation data in the low stress regime for linear anelasticity 
led to strain rate-stress data in reasonably close agreement with results obtained from 
dead-load creep tests conducted in the viscous creep regime. Creep recovery experiments 
indicated that anelastic deformation in these ceramic materials was relatively insensitive 
to changes in temperatureand grain size over the range of variables studied. 

1. Introduction 
An analysis for the calculation of plastic strain 
rates and stresses from stress relaxation measure- 
ments taken under conditions of four-point 
bending has been proposed by Shetty and Gordon 
[1]. In this analysis, the plastic deflection rate, ~, 
of the specimen is calculated from 

= _ c  _@ 
dr' 

where C is the total elastic compliance of the 
system, including the specimen and the machine 
components such as the load cell and dP/dt is the 
rate of load relaxation. Shetty and Gordon 
assumed that stress relaxation is due entirely to 
the conversion of elastic strain to plastic strain. 
In the present paper, the validity of this assumption 
will be analysed by comparing strain rates calcu- 
lated from stress relaxation and dead-load creep 
tests. It will be shown that anelastic effects have a 
significant effect on the interpretation of stress 
relaxation data. The effect of anelasticity on 
stress relaxation in metallic systems has been 
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recognized by previous investigators [2-4] ; 
however, the direct comparison of strain rates 
calculated from stress relaxation and dead-load 
creep tests is rare in deformation tests at high 
temperatures on ceramic materials [5 ]. 

2. Experimental procedure 
Specimens tested in this study included dense 
polycrystalline MgO doped with 2.65 cation% 
Fe and polycrystalline A12Oa doped with 1 to 
2 cation%Fe, with grain sizes, Gs, between 10 
and 90/am. These materials and dopants were 
selected because extensive dead-load creep data 
were available [6, 7] in these systems for compari- 
son with stress relaxation data. The methods used 
in the preparation of these specimens have been 
described elsewhere [6, 7]. Stress relaxation 
tests were performed in four-point bending using 
an apparatus described by Shetty and Gordon [1 ]. 
Creep recovery experiments were performed using 
a four-point dead-load creep apparatus, with a 
remote unloading system which is described 
elsewhere [8]. 
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In the stress relaxation tests, plastic strain 
rates and stresses were calculated from 

4h = #- ( & -  &) 

4h 
= aT [P(t) (c, ,  - Co) + ?ct(t)], (2) 

where emax is the maximum plastic strain rate in 
the outer fibre, ]~c is the plastic deflection rate at 
the centre of  the beam, ]:'z, is the plastic deflection 
rate at the load points, h is the thickness of  the 
beam, a is the distance between load points, Yct 
(t) is the total centre-point deflection rate at any 
time t, P (t) is the corresponding rate of load 
change at time t, and Cc and CL are the elastic 
centre-point and load-point compliances, respec- 
tively, and from 

Mh 2N '  + 1 
= 21 3N '  ' (3) O'ma X 

where 

N r _ 
d log ernax 

d logM ' 

M is the bending moment in the inner span and I 
is the moment of  inertia of the cross-section�9 

3. Results 
3.1. Stress re laxa t ion  
Typical strain rate-stress data calculated from 
stress relaxation tests at 1350 ~ C on polycrystalline 
MgO doped with iron are shown in Fig. 1. A 
series of  creep tests have been conducted on similar 
specimens [6] and creep maps have been con- 
structed [9] from steady.state dead-load creep 
data. The stress-strain rate characteristics predicted 
from the creep maps are indicated by the broken 
lines in Fig. 1. In both polycrystaUine MgO and 
AlzO3, two deformation regimes were readily 
apparent. At low stresses, viscous (or diffusional) 
creep was dominant, while at higher stresses 
power-law or exponential creep mechanisms 
dominated�9 A comparison of the t w o  sets of 
deformation data revealed several important 
differences. The quantitative agreement in the 
magnitude of the strain rates at a fixed stress 
between these two types of experiments was 
poor. The strain rates calculated from the stress- 
relaxation tests were higher than those measured 
in dead-load creep in the high stress regime�9 
However, in the low stress regime the strain rates 
measured in dead-load creep were higher than 

- 4  

' 0 - 5  
i , I  
0"3 

ILl 
- - 6  

r r  

Z 
<[ 
cr  - - 7  
F- 
o3 

(_9 
o - 8  

- 9  

MgO DOPED WITH 2.65% Fe 
1350 ~ C N= 4.5 

a ~rN N-4 8,g' 
o GS = I l f l .m - ~ ' ~  

�9 GS = 57/zm ~ i ~ '  

^~  ~ - - - "  ~ "  . / .  

.--- - " ~  / ,v:3.o 

~ i N =  I,O 

015 I:0 115 

LOG [STRESS (MN nq2)] 

2 . 0  

Figure 1 Strain rate-stress behaviour of polycrystalline 
MgO doped with 2.65 cation% Fe tested by stress relax- 
ation and dead-load creep. 

those calculated from stress relaxation data�9 
Disagreement of this kind was observed in the 
high-temperature deformation of both poly- 
crystalline MgO and A12 03. In addition to differ- 
ences in strain rates, discrepancies also existed in 
the observed dependencies between strain rate 
and stress�9 The stress exponents (i.e., N; ~ = o N) 
in both the low and high stress regimes calculated 
from stress relaxation data were higher than those 
inferred from dead-load creep data. To determine 
if the foregoing differences in deformation charac- 
teristics were due to variabilities in the specimens 
used in the two types of tests, some specimens 
were first tested under conditions of dead-load 
creep and then stress relaxation tests were per- 
formed on the same specimens�9 The dead-toad 
creep data were in agreement with the predictions 
of the creep maps; however, the strain rate-stress 
curves calculated from the stress relaxation data 
did not agree with the predictions of the maps. 
It was therefore concluded that the results shown 
in Fig. 1 were not due to different characteristics 
in the test specimens but to differences inherent in 
the dead-load creep and stress relaxation modes 
of deformation�9 

In metallic systems, the disagreement in strain 
rates calculated from dead-load and stress relaxation 
data has been observed [2]. As far as the authors 
are aware, the only comparison in a ceramic 
system of strain rates calculated from both dead- 
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TABLE I Creep recovery characteristics in polycrystalline MgO and A1203 doped with iron. 

Base Impurity Temperature Aa r -! (min -1) 
oxide (o C) (MN m -s) 

G s=18um Gs=89~m G s=16t~m G s=26#m G s=29t~m 

MgO 2.65%Fe 1160 10 4.6X10 -3 
MgO 2.65%Fe 1350 10 4.0X10 -3 1.3X10 -3 
MgO 2.65 % Fe 1350 2.5 1.1 X 10 -3 
MgO 2.65 % Fe 1425 10 8.9 X 10 -4 
AI203 2 %Fe 1300 5.8 
AI203 2 %Fe 1450 5.8 

3.7 x 10 -3 
2.2x 10 -3 2.1x 10 -3 6.3x 10 -3 

load creep and stress relaxation was made by 
Roberts [5] for the high-temperature deformation 
of polycrystalline UO2. Roberts reported close 
agreement between data generated by the two 
techniques. However, the stress relaxation and 
dead-load creep experiments were not performed 
on the same specimens. The dead-load creep data 
were taken from experiments of Bohaboy e t  al. 

[10]. More importantly, the ranges of strain rates 
and stresses for the two types of deformation 
tests did not overlap each other. Based on the 
results of this study, it is believed that dead-toad 
creep and stress relaxation experiments should be 
performed within the same or overlapping range of 
stress before any definite conclusions can be 
drawn*. 

In all stress relaxation tests, the load-relaxation 
cycle had to be repeated more than about five 
times before reproducible strain rate-stress 
curves were obtained. Typical load relaxation 
cycles are shown in Fig. 2a for polycrystalline 
A1203 doped with 1 cation% Fe. After several 
loadings, the strain rate-stress curves were repro- 
ducible. Both transient effects [11 ] and local 
deformation at the load and support points (i.e., 
portions of the specimens which are in the vicinities 
of these regions might relax during the test) might 
be responsible for the observed decay in strain 
rate at a given stress with multiple loading. Hart 
and Solomon [11] reported a decay in strain rate 
with multiple loading which is similar to that 
shown in Fig. 2a. They attributed the decay to be 
a non-recoverable transient. It has been verified 
experimentally in this study that if a given loading 
cycle (e.g. the sixth in Fig. 2b) is followed by a 
subsequent loading cycle (i.e., the seventh) in 
which the maximum stress is significantly lower, 
the strain rate-stress curve becomes similar to that 
observed in a previous cycle (e.g., the third cycle 

in Fig. 2b). This reversible characteristic indicated 
that the transient behaviour of the material was 
responsible for the observed decay in strain rate, 
particularly in loading cycles after the initial one. 
Although Hart and Solomon [ 11 ] concluded that 
the transient was non-recoverable, the results of 
this study indicated that transient deformation 
was reversible. An examination of test specimens 
after the stress relaxation experiments indicated 
that some localized deformation occured in the 
vicinity of  the load and support points. However, 
it is believed that the decay in strain rate which 
existed after the initial loading, was due to the 
recoverable transient. The decay in strain rate 
due to any local deformation, is likely to be 
present only in the initial loading cycle. The 
stress relaxation results reported in this paper, 
other than those shown in Fig. 2a and b, were 
obtained after the fifth loading cycle. 

3.2. Creep recovery and transient creep 
Typical creep recovery data at 1350 to 1450~ 
are shown in Fig. 3. Prior to the creep recovery 
test, creep specimens were loaded at stresses 
up to 10MNm -z which were normally within 
the limit of viscous creep for the range of grain 
size studied in polycrystalline MgO and Al203. 
A single exponential relaxation could not be 
used to describe the entire recovery process. 
The data points taken in the initial stages of 
creep recovery did not lie on the straight line 
which could be used to fit the later stages of 
recovery. The relaxation times, r ,  representing 
the final stages of  creep recovery are summarized 
in Table I. Over the range of variables studied, 
the relaxation time for creep recovery was insensi- 
tive to variations in temperature, stress or grain 
size. These experiments were performed on the 
selected (about5)  specimens which were also 

*It is possible that in the case of UO 2 the anelastic contributions to deformation are very small. However, this possi- 
bility is most unlikely because Bohaboy et  al. [10] observed extensive transient creep behaviour in their compression 
creep experiments. 
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Figure 2 Effect of repeated loading on 
strain-stress behaviour obtained from 
stress relaxation tests on polycrystalline 
A1203 doped with iron. 
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Figure 3 Creep recovery tests 
conducted on polyerystalline 
A12 O 3 doped with 2 cation % 
Fe and polycrystaUine MgO 
doped with 2.65 cation % Fe. 

tested in stress relaxation. Consequently, a limited 
range of temperatures and grain sizes were studied. 
The primary objective of  the recovery experiments 
was to generate material constants which were 
needed to evaluate the anelastic effects in stress 
relaxation. 

The transient and recovered strains observed in 
typical dead-load creep and creep recovery tests are 
summarized in Table II. Dead-load creep was first 
measured and then creep recovery was examined. 
The loading-unloading cycle was repeated several 
times. The strains in Table II are listed in the order 
in which the experiments were performed. Except 
for the first loading cycle, the transient strain was 
recovered completely during loading. The effects 
of grain size, temperature and stress on the tran- 
sient and recovered strains were not significant 
over the range of variables studied. 

4. Discussions and analysis 
At extended times in a stress relaxation test on a 
polycrystalline material which can deform by a 

diffusional (or viscous) creep mechanism, one 
might except stress relaxation to obey an equation 
of the form 

a = Oo exp (-- El t/~71), (4) 

where E1 is the elastic modulus, Oo is the initial 
stress and 71 is the viscous (diffusional) creep vis- 
cosity (= kTG~/44~2vDeompIex, where k is the 
Boltzmann's constant, T is the absolute tempera- 
ture, G s is the grain size, [2 v is the molecular 
volume and Deomple x is the complex diffusivity). 
Accordingly, it should be possible to measure the 
term, E:/~I, from stress relaxation, compute 71 
knowing El, and compare the calculated viscosity 
with that computed from dead-load diffusional 
creep measurements (i.e., ~ = a/~h). When this 
comparison was made for polycrystaltine Al=O3 
doped with 1%Fe, reasonably good agreement 
was achieved between r/1 (2.4 •  -2) 
computed from stress relaxation data taken at 
long times and rh (2.2 x 1013 N sec m -2) calculated 
from diffusional creep data (i.e., Deomp]e x = f(DXAI 
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TAB LE II Transient and recovered strain observed in dead-load creep and creep recovery 

Base oxide Dopant G s T (o C) A cr (MN m -2) Transient 
(~m) strain (cieep) 

(X 10-') 

Recovered 
strain 
(creep recovery) 
(X 10 -4) 

AI~ 03 2 % Fe 16 1450 5.6 6.3 
A12 03 2 % Fe 16 1450 5.6 2.8 
AI~ 03 2 % Fe 16 1450 5.6 2.7 
AI~ 03 2 % Fe 26 1450 6.0 4.3 
AI~ 03 2 % Fe 26 1450 6.0 1.7 
A12 O s 2 % Fe 26 1300 6.0 1.5 
A1203 2 % Fe 26 1300 6.0 1.2 
A12 O 3 2 % Fe 29 1450 5.8 3.8 
A12 O 3 2 % Fe 29 1450 5.8 2.7 

MgO 2.65 % Fe 18 1350 10.0 6.1 
MgO 2.65 % Fe 18 1350 10.0 3.9 
MgO 2.65 % Fe 18 1160 10.0 2.8 
MgO 2.65 % Fe 89 1350 2.5 4.8 
MgO 2.65 % Fe 89 1350 2.5 3.2 
MgO 2.65 % Fe 89 1350 10.0 
MgO 2.65 % Fe 89 1350 10.0 4.1 
MgO 2.65 % Fe 89 1350 2.5 
MgO 2.65 % Fe 89 1425 10.0 4.2 

2.1 
2.9 
3.1 
1.9 
2.3 
1.4 
1.1 
2.6 

4.6 
3.6 
3.2 
4.2 
3.4 
6.4 
6.0 
3.9 
6.3 

and ~AIDbl), where D1A1 is the aluminium lattice 
diffusivity and D b is the aluminium grain-b oundary 
diffusivity and ~A1 is the effective width for alu- 
minium grain-boundary diffusion). Even with this 
agreement, the correspondence between the 
actual creep rates calculated from both stress 
relaxation and dead-load creep data was poor. 

Two principal assumptions were made in the 
calculation of  strain rates from stress relaxation 
data: (1) the testing machine and loading system 
had a high stiffness and (2 )no  anelastic defor- 
mation contributions were present. The effect of  
machine relaxation, including that of  the loading 
system, can be determined from a stress relaxation 
test conducted on a "stiff" specimen. An undoped 
alumina specimen with a thickenes of  about 
14mm (a typical thickness was about 1.4 to 
1.5 mm) was tested by stress relaxation and the 
deflection ra te- load behaviour was measured. 
In specimens, such as A12 03 doped with 1 to 2 % 
Fe and MgO doped with 0.53 to 2.65 % Fe, the 
deflection rate of  the specimen was about two 
orders of  magnitude higher than the deflection 
rate of  the "stiff" specimen. Therefore, it was 
reasonable to conclude that the stress relaxation 
of  machine components and the loading system 
did not cause the discrepancies observed in strain 
rates which were computed from both dead-load 
creep and stress relaxation tests. 

In the stress relaxation analysis of  Shetty and 

Gordon, the following assumption for total strain 
was made: 

eTota 1 = eElas ~ q- ePlas~i e. (5) 

For stress relaxation at constant total strain, 

erotm= 0 = eEms~ + ePms~e (6) 

and 

eP~sac = -- emas~c - E" (7) 

That is, in stress relaxation, the elastic (instan- 
taneous recoverable) strain is converted into 
plastic strain. If  diffusional (viscous) creep rep- 
resents the plastic strain, then we have the classical 
Maxwell body corresponding to a spring and 
dash-pot in series. A generalized Maxwell body 
including viscous and elastic elements should 
have the following creep characteristics: 

(a) On the application of  the load, elastic 
deformation takes place instantly, followed by 
steady-state creep. No transient creep should be 
observed. 

(b) When the load is removed after the creep 
test, the elastic strain will be recovered instantly. 
However there will be no time-delayed strain 
recovery. 

Careful examination o f  the dead-load creep 
characteristics of  polycrystalline MgO and A12 03 
revealed, however, the presence of  significant 
transient creep at the beginning of  the test (about 
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10h) and, more importantly, the occurence of 
significant recovery (time-delayed recoverable 
strain) when the stress was removed. These obser- 
vations were consistent with the presence of an 
anelastic contribution which can be approximately 
represented by a Maxwell-Voigt (or Kelvin) 
deformation model [2]. In this model, the follow- 
ing behaviour is predicted for creep under dead- 
load conditions. 

(1)After instantaneous elastic deformation, 
transient deformation which is recoverable should 
occur prior to the on-set of steady-state defor- 
mation, i.e., 

e = a + b t + c ( 1 - - e - t / r ) ,  (8) 

where a, b, c and r are constants. 
(2)When the specimen is unloaded during 

dead-load creep, the anelastic Voigt (or Kelvin) 
element will lead to creep recovery. 

e = C l e  - t / r  + d, (9) 

where C1 and d are constants. 
(3) The stress relaxation curve will have two 

exponential terms, 

P = C l e  - t / z l  + C2e -t/r2 , (10) 

where C2, r l  and ~'2 are constants. 
These properties suggest that the Maxwell- 

Voigt body is a better representation of the 
deformation characteristics encountered in this 
study than the simple Maxwell body. According 
to the Maxwell-Voigt deformation model 

eTo~ = eEheac + ephstic + eAnehstic. (1 1) 

For stress relaxation, 

~Total = 0 = eElastic "]- ~Plasfic "b e Anelastic 

and (12) 

6 
e Plastic -- e Anelastic �9 (13) 

E 

In the stress relaxation analysis of Shetty and 
Gordon [1], eAne]a~ was assumed to be small or 
zero. This can only be strictly valid in the absence 
of transient creep and recovery effects. 

In Equation 13, the first term is positive since 
d < 0. At short times in a stress relaxation test, 
eAnelastic (= 0/72) ~ 0 (assuming a Voigt element, 
e = o/E2 (1- -exp--E2t / r l2) )  and ~pla~c will be 

overestimated, when eAnelastic is assumed to be 
zero. At long times, egnehstic ( = d / E 2 ) < O  and 
~]astic will be underestimated when ~Anelas~ is 

ignored. These effects were in accord with the 
general experimental observations (e.g. Fig. 1). 

In a dead-load creep test, the effects of anelas- 
ticity are also present, but only during initial 
transient creep (see Equation 8). Once steady-state 
creep has been achieved, all anelastic effects are 
completely relaxed. Only the Maxwell element is 
present in the steady-state creep regime. 

Thus, it appears that anelastic deformation 
effects were responsible for the lack of direct 
correspondence between dead-load creep rates 
and those calculated from stress relaxation measure- 
ments assuming "Maxwellian" behaviour. The 
initial objective of the stress relaxation study was 
to construct creep deformation maps in the high 
stress regime where dead-load creep testing is 
difficult because of excessive deformation strains. 
However, stress relaxation tests may not be 
suitable for this purpose unless the anelastic 
contributions to deformation can either be 
suppressed or taken into account in the analysis of 
the data. 

The problem is the extent to which anelasticity 
affects the stress relaxation test. This is difficult 
to assess because the materials investigated in this 
study could not be represented simply by a 
viscoelastic Maxwell-Voigt body. However, the 
effect of anelasticity on viscous (diffusional) 
deformation can be shown by comparing the stress 
relaxation curves typical of two simplified models: 

i.e., viscoelastic Maxwell-Voigt and Maxwell 
bodies. The Maxwell-Voigt element is shown in 
Fig. 4. In this model, it is assumed that the spring 
obeys Hooke's law and that the dash-pot represents 
the viscous element. A mathematical expression 

El 

Figure 4 MaxweU-Voigt (or Kelvin) deformation model. 
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TABLE I II Material characteristics for the Maxwell-Voigt deformation contribution in polycrystalline AI 2 O 3 and 
MgO 

Element Source 2 % Fe-AI203 (1450 ~ C) 2.65 % Fe-MgO (1350 ~ C) 

E 1 [12, 13] 1.0X 1011 Nm -2 2.15 X 1011 Nm -2 
E2* Assumed 4.0 X 1011 Nm -2 8.60 X 1011 Nm -2 
~1 Dead-load 4.01 X 1013 Nsecm -2 3.10 X 1014 Nsecm -3 

creep 
r~3 Creep recovery 4.14 X 101. N seem -2 4.44 X 10 is Nsecm -2 

*E 2 = 4 E  1 

for the stress relaxation behaviour of this body is 
given by (see the Appendix): 

a(t)-a~ [ (  a - b -E--~II'Q2] e-(a-b) t  

E2 
(14) 

where a = 1/2 + E-A + , (15) 
~2 

= (16) 
rh r/2 

and a0 is the initial stress. In the limit of r h = ~o,  

which corresponds to an absence of anelasticity 
(i.e., no Voigt element), Equation 14 simplifies 
to 

"01 t, 
o = aoe (17) 

which is the expression expected for the Maxwell 
body. For the case of polycrystalline Al2 03 and 
MgO doped with Fe, estimates have been made 
for the E and r/values of the Maxwell-Voigt body 
using data taken from dead-load creep and creep 
recovery experiments. The Young's moduli of 
polycrystalline A12 03 and MgO at high tempera- 
ture (1350 to 1450 ~ C) were obtained from values 
published in the literature [12, 13]. The value of 
E2 was arbitrarily set because there was no 
convenient way to estimate it. If  El  was assumed 
simply to be equal to E2, a stress relaxation curve 
was obtained that approached zero stress from 
negative values when t is large. To avoid this 
problem, E2 was arbitrarily set at 4E1. The 
steady-state dead-load creep rate is equal to 
o/~h. Knowing the value of a, the value of Ha 
was estimated. The values of  rh were obtained from 
the final slopes (= - -E2 / r / z )  of creep recovery 

curves in Fig. 3. These estimates are summarized 
in Table III. 

Using Equation 14 and 17, a series of  theoretical 
stress relaxation curves was generated. The analysis 
of Shetty and Gordon [ 1] (using Equations 2 and 
3) was conducted on these calculated stress 
relaxation curves. The resulting strain rate against 
stress data are plotted in Fig. 5 for the deformation 
of polycrystalline AI~ 03 doped with iron. Even 
though the Maxwell model represents viscous (or 
linear) behaviour ( N =  1), the analysis of stress 
relaxation on the same material, when a Voigt 
element is introduced, led to the existence of 
slightly non-viscous (or non-linear) behaviour 
(N "~ 1.3). Also, in the low stress regime, the 
stress relaxation data obtained from the Maxwell- 
Voigt model led to lower creep rates than those 
inferred from the Maxwell model. These results 
were consistent with the experimental observations 
(see Fig. 1). Of course, the disagreement between 
the strain-rate predictions of these two models 
was not as large as that observed experimentally. 
For reasons of mathematical simplicity, only 
viscous (or linear) behaviour was assumed. If 
non-linear behaviour is taken into account*, the 
disagreement between creep rates calculated from 
the stress relaxation and dead-load creep data 
should be even larger. 

In order to determine the effect of anelasticity 
on the stress relaxation tests, the following calcu- 
lations were made. For a given initial maximum 
stress, ao, the stresses aM(t) and aM-V(t) were 
calculated as a function of time using Equations 
17 and 14, respectively, and the data in Table III. 
The load, PM(t), corrected for anelastic defor- 
mation, can be given by 

PM(t) = aM(t) 
aM_v(t ) �9 P(t), (18) 

where P(t) is the actual load measured experimen- 

*Another dash-pot is added in series which has non-linear deformation characteristics. 
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Figure 5 Strain rate-stress behaviour 
of model materials which are rep- 
resented by viscoelastic Maxwell- 
Voigt (or Kelvin) and Maxwell 
elements. 

tally, aM(t) is the theoretical time dependent Max- 
weU stress and aM-v( t )  is the theoretical time 
dependent Maxwell-Voigt stress. PM(t) data, 
which were corrected at least for linear anelasticity, 
were analysed using Equations 2 and 3. The analy- 
sis of the two stress relaxation curves, with and 
without the linear anelastic correction, led to the 
results shown in Figs 6 and 7. In both cases, the 
stress exponent in the low-stress regime decreased 
from a high value (~  2) to the expected viscous 
value of 1. The absolute strain rate  in ,the low-, 
stress regime either increased to the value pre- 
dicted f r o m  dead-load creep, as in the case of  
MgO, or approached the dead-load creep value, as 
in the case of Al203. The differences in the abso- 
lute quantitative agreement in the tests on these 
two materials are probably due to the uncertainties 
involved in estimating the material parameters 
(E, 77) in the Voigt and Maxwell elements. On the 
other hand, the strain rates in the high-stress 
regime were not affected by this analysis. The dis- 
agreement in strain rates at high stresses, which 
existed after the linear anelastic correction was 
made, was probably due to two factors. First, 
creep recovery could not be represented by a 
single exponent term (Fig. 3). A short time relax- 
ation occurred in creep recovery which had a large 
effect on the strain rate calculated from the data 

in the high-stress regime of the stress relaxation 
test. Second, only viscous (or linear) behaviour 
was assumed to be operative in plastic deformation. 
Power-law (or non-viscous) creep, which was neg- 
lected in the Maxwell-Voigt model for mathe- 
matical simplicity, has a large effect on the strain 
rate in the high-stress regime. No correction was 
made for the effect of  power-law (or non-viscous) 
creep deformation. 

The data shown in Figs 6 and 7 indicated that 
anelasticity was the principal cause of the dis- 
agreement in strain rates inferred from stress 
relaxation and dead-load creep data. Difficulties 
exist in the analysis of anelastic deformation 
because the effect of the anelastic element on 
stress relaxation is not additive (compare with 
Equation 14) and because the linear Maxwell- 
Voigt body is not a completely adequate rep- 
resentation of the materials which were studied. 
The effect of anelastic deformation on the stress 
relaxation test is not simple. Although it has been 
common practice in the literature [3, 4, 14] to 
assume that anelasticity is linear in nature, the 
disagreement at high stresses in strain rates cal- 
culated from dead-load creep tests and anelastically 
corrected stress relaxation tests indicated that 
there should be another non-linear, anelastic 
element to describe the deformation properties 
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Figure 6 Effect of linear anelasticity 
on the strain rate-stress behaviour of 
polycrystalline A1203 doped with 
2 cation % Fe. 

in the high-stress regime. In terms of the simplified 
model, shown in Fig. 4, dash-pots which have 
non-linear characteristics should possibly be 
included in both the Voigt and Maxwell defor- 
mation elements. Unfortunately, the differential 
equations representing these models are non- 
linear and solutions must be obtained numerically. 
The reversible transient behaviour shown in Fig. 
2b is probably due to the existence of a non-linear 
anelastic deformation element. It cannot be 
accounted for simply by the introduction of a 
permanent non-viscous (or power-law) defor- 
mation element. 

The non-viscous (or power-law) strain rate-stress 
exponents obtained from dead-load creep tests 
were 2.5 to 5 and 2.5 to 3.5, for polycrystalline 
A1203 [7, 15, 16] andMgO [17-19],respectively. 
They were smaller than the stress exponents, of 
approximately 7 and 4.5, which were inferred 
from the stress relaxation data taken in this 
study. In view of the foregoing analysis, it was 
tentatively concluded that the higher stress 
exponents inferred from the stress relaxation tests 

were due, in part, to the effects of non-linear 
anelasticity. 

A micromechanical discussion of anelasticity 
in metals has been given by Hart [3]. When 
dislocations are held up at obstacles and form 
pile-ups, a back stress will be exerted on dislocation 
gliding. Anelastic recovery could be due to the 
motion of dislocations which are held up by 
obstacles during loading. To a first approximation, 
the number and mobility of these dislocations 
could be relatively insensitive to changes in tem- 
perature, leading to athermal recovery effects. 
Stress redistribution controlled by diffusion [20] 
probably does n o t  account for the observed 
anelastic behaviour because the activation energies 
for the diffusion of host ions in A12 03 and MgO 
are very high (60 to 150kcalmo1-1) [21-25] .  
Another possible cause of elasticity might be a 
diffusional redistribution of impurities caused by 
stress changes. Again the recovery process should 
be strongly temperature dependent. The activation 
energy for the diffusion of Fe 2 § in MgO [26] is 
reported to be 42 kcal tool -1, which gives a factor 
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of about 6 change in the recovery relaxation time 
when the temperature is increased from 1160~ 
to 1350 ~ C. Within the experimental accuracy 
(compare with Table I) of the recovery measure- 
ments, differences of this order are difficult to 
detect. Also, internal friction measurements [27] 
in single-crystal MgO have suggested that the peak 
height is proportional to the impurity (Cr and Fe) 
content and an activation energy of 49 kcal mo1-1 
(peak shift) was observed. The activation energy 
for the diffusion of Fe in Al2Oa is not known. 
Internal friction measurements [28] in poly- 
crystalline A1203 led to an activation energy of 
approximately 50kcalmo1-1, which is thought 
to be caused by viscous-phase stress relaxation at 
grain boundaries (Zener's theory*). The relatively 
low activation energy inferred from internal 
friction measurements on A12Oa suggested that 

Zener's mechanism might be responsible for the 
anelastic effects observed in this study. Systematic 
and more extensive studies of high-temperature 
anelasticity are needed before any definite con- 
clusions can be drawn for the deformation of 

polycrystalline A120 a and MgO. However, the 
preliminary data which are available suggest that 
anelastic deformation in these potycrystalline 
materials is athermal or weakly dependent on 
temperature. 

5. Conclusions 
The strain rates for the high-temperature defor- 
mation of iron<loped, polycrystalline A1203 and 
MgO which were calculated from both dead-load 
creep data and stress relaxation data were not in 
good agreement. The discrepancies were believed 
to be due to anelastic deformation effects. It is 

*Zener [29] suggested tha t  it is no t  necessary for any por t ion  of  material  to be amorphous  in order for the  grain 
boundaries  to behave in a viscous manner .  It is necessary to assume only tha t  the  resistance to slipping o f  one grain over 
an adjacent grain obeys the  laws commonly  associated with amorphous  materials rather than  tlae laws associated with 
crystalline materials. 
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concluded that errors will be encountered in the 
analysis of stress relaxation, if it is assumed that 
the elastic strain is converted into only plastic 
strain and no anelastic contribution to defor- 
mation is considered. In dead-load creep tests, the 
contribution of anelasticity can be minimized 
because steady-state creep was observed, indicating 
that the anelastic deformation elements are com- 
pletely relaxed. The method of  strain-rate cal- 
culation proposed by Shetty and Gordon [1] for 
stress relaxation under conditions of four-point 
bending can only be used to calculate plastic 
strain rates provided that there is no anelastic 
contribution to deformation. Unless the con- 
tribution of anelasticity can be eliminated, or 
quantitatively taken into account, the stress 
relaxation test can not be used to construct 
creep maps together with data obtained from 
dead-load creep tests. 

The effect of anelasticity on the stress relaxation 
test was demonstrated by making use of model 
materials which exhibit viscoelastic Maxwell and 
Maxwell-Voigt deformation characteristics. Even 
though a "Maxwellian" body shows viscous (or 
linear) creep behaviour (N = 1), the same material, 
when a Voigt element is introduced, deforms with 
slightly non-viscous (or non-linear) characteristics 
under conditions of stress relaxation. It was shown 
that by assuming linear anelasticity, the creep 
rates in the low-stress regime calculated from stress 
relaxation tests could be corrected to values which 
agreed with data obtained from dead-load creep. It 
is proposed that the discrepancies which existed 
in the high stress regime, after the corrections for 
linear anelasticity were made, will be removed 
only if another non-linear anelastic deformation 
element is taken into account. 
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Appendix: Analysis of stress relaxation in 
a MaxwelI-Voigt (or Kelvin) 
deformation model 

For a Maxwell deformation model,  the appropriate 
differential equation is 

1 do 1 de 
- - - - - t - - - o  = - -  = O. ( h l )  
Ea dt ~a dt  

Solving this equation and evaluating the constants 

using the appropriate initial boundary condition 
(i.e., at t = 0, a = 0) gives 

_g_a-t 
O" = 17 0 e r/t (n2) 

To find a solution for a stress relaxation test 
conducted on a Maxwell-Voigt body, let us 
assume for mathematical, simplicity that the 
dash-pots in both the Maxwell and Voigt elements 
are viscous (or linear). Then, for the Maxwell- 
Voigt model shown in Fig. 4, the equations of 
stress and strain are given by 

dean 
o = E:ean + rl2 - -  (A3) 

and dt 
_ dean de 1 do +_._1 o +  - (A4) 

dt  Ea dt ~h dt  ' 

where can is the strain for the Voigt element. The 
boundary conditions are 

At t = 0, a = %;  (A5) 

At t /> 0, e = constant; (A6) 

At t = oo.a = 0;and (A7) 
g 

If ~/2 = % a  = e-g~-,t. (A8) 

Condition A6 gives de/dt = 0 and Equation A4 
becomes 

1 do 1 dean 
d--7 + - - o  + = O. (A9) E1 rh dt 

The solution to Equation A3 is 

e a n =  e % en2 o d t + C a  . (A10) 

Substituting ean into Equation A9 gives 

-~T e n2 ~ [ -~2 J n~ o d t + -~7 ) 

1 do 
- E a dt"  (Al l )  

Equation A11 can be solved by letting 

E~_ t a(t) dt. (a12) Y(t )  = e n= 

and the solution is 

= - -a  + C2e -(a-b)t  

+ (  r/2 _ a _ b) Cae_(a+b)t ' 

(A13) 
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where 

and 

a =  1 / 2 ( ~  + E--Lrl2 + ~ )  (AI4)  

b ~ (a 2 E1E211/").~?lql~2] (AI5) 

C2 and Ca are constants to be evaluated. From 
Conditions A5 to A8 we can write 

E1 a --  b --  e -(a-b)t  

+ ( a + b - - E 2 t e - ( a + b ) t ] .  (A16) 

721 l 
Freudenthal [2] combined Equations A3 and A4 
and obtained a solution by a Laplace transform- 
ation assuming a step function for strain. The 
solution* is 

ao [(_a + b +E2te_(._b) ~ 

+(a+b--r;:]E~e-(a*b)t] j. (A17) 

The difference between the two solutions (Equa- 
tions AI6  and A17) arises from their different 

boundary conditions. The solution derived in this 
study is consistent with the behaviour of a 

Maxwell-Voigt element when the strain is held 
constant with the boundary conditions given by 

Equations A5 to A8. However, the solution 
obtained by Freudenthal describes the behaviour 
of the model when a step strain is applied. In this 
case, the solution corresponds to an instantaneous 

change in strain (delta-function for ~). If the strain 
was changed gradually with a finite strain rate 
which will be the case for actual experiments), the 
solution will change slightly. The differences in the 

constants in these two solutions reflect the differ- 
ent boundary conditions. However, the two 
solutions are basically the same. The more import- 
ant point is that the stress calculated for the Max- 
well model (Equation A2) has only one exponen- 
tial term. When a Voigt element is introduced, the 

stress must be expressed by two exponential terms 
(Equations A16 and A17). 
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